Difference in practical dialysis therapy between East Asia and US/EU

Jer-Ming Chang. M.D., Ph.D.

 ¹Professor, Attending physician, Kaohsiung Medical University Hospital;
 ²Secretary General, Taiwan Society of Nephrology

Impact of dialysis expense on...

1. Personal economics

2. Health insurance (national or private)

3. Social equality

Budget for dialysis in Taiwan

Fiscal year	2009	2010	2011	2012	2013
Budget (USD, millions)	1,007	1,028	1,028	1,038	1,063

➢ By the end of 2012, dialysis p'ts – 0.28% of population, but expenses – 6.3% !! (only fee for dialysis)

Comparison of unadjusted

ESRD prevalence worldwide

Figure 12.1, continued (Volume 2)

Prevalence 2,400 Taiwan 2,100 Japan 1,800 Incident rate per million population **United States** 1,500 1,200 Netherlands 900 Canada Hong Kong Rep of Korea Australia 600 Isreal Argentina Turkey 300 0 01 02 03 05 08 99 00 04 06 07 09 10

All rates are unadjusted. Data from Argentina (2005–2007), Japan, & Taiwan are dialysis only.

What is more serious...

A common reaction when patients are told to live on further with dialysis:

ちびまる子ちゃん

All right, I'll take it • But: At what time should I start, "Earlier" vs "Later"

Proposed benefits of earlier initiation

• Minimize the clinical complications related to

Will the late-initiation do worse?

- Avoid uremic symptoms
- Lower the mortality

How about the more recent data?

• Improve the quality of life

Bonomini V et al, KI, 1985; Tattersall J et al, Am J Nephrol, 1995; Churchill DN et al, JASN, 1997; Hakim RM, Adv Nephrol Necker Hosp, 1994; Obrador GT et al, AJKD, 1998;

• Early? : > 10 ml/min/1.73 m²BSA

Ideal Timing and Predialysis Nephrology Care Duration for Dialysis Initiation: From Analysis of Japanese Dialysis Initiation Survey

Impact of the clinical conditions at dialysis initiation on mortality in incident haemodialysis patients: a national cohort study in Taiwan

• eGFR quintiles: <3.29, 3.29~4.27, 4.28~5.20, 5.21~6.51, >6.52

(Adjusted for age, gender, co-morbidities, Hct, primary etiologies, and dialysis modality)

Hwang SJ et al. NDT, 25:2616-24, 2010

Early Start of Dialysis Has No Survival Benefit in End-Stage Renal Disease Patients J Korean Med Sci 2012; 27: 1177-1181

Residual renal function at the start of dialysis and clinical outcomes

The only non-observational study

• IDEAL trial

N Engl J Med 2010.

828 CKD patients were randomized (Ccr) into:

- -- Early-start 10~14 ml/min
- -- Late-start 5~7 ml/min

GFR at Initiation of Dialysis and Mortality in CKD: A Meta-analysis Am J Kidney Dis. 2012;59(6):829-840

16 cohort studies and one RCT – total 1,081,116 patients
GFR: creatinine-based estimated or calculated GFR

An instrumental variable approach finds no associated harm or benefit with early dialysis initiation in the United States (N = 89,547)

Issues between Early v.s. Late dialysis

- Patients who were dialyzed earlier might have more co-morbid conditions, or might be older.
- Creatinine is a marker of renal function, and also of muscle mass. In sarcopenic CKD patients, CRTN-based eGFR might actually over-estimate the real GFR.
 The MDRD formula does not reflect GFR in ESRD patients Nephrol Dial Transplant (2011) 26: 1932–1937
- Using other method to assess renal function, no significant association was shown between higher GFR at dialysis initiation with death risk.

Initiation of dialysis should be timely: neither early nor late

- Dialysis is not risk-free.
- In patients of advanced CKD
 but without obvious clinical manifestation,
 Dialysis Initiation: What's the Rush?

Seminars in Dialysis 2013 pp. 650–657

- Dialysis should not be denied in CKD patients suffering from clinical complications, either related to renal or non-renal causes, even though the eGFR is 10 ml/min.
- Financial burden to the healthcare system.

Seminars in Dialysis—Vol 26, No 6 2013 pp. 644–649

Vascular access

Dialysis initiation

Fistula, Graft, Tunneled cathter

Morbidity/mortality

<u>Choice of RRT modality</u>

• Native vascular fistula

 \checkmark Ability to heal (rather than clotting) \checkmark Easier to monitor the patency ✓ Greatest expectancy of clinical usefulness ✓ Needing longer time to be ready for cannulatation Synthetic graft ✓ Ready for use in shorter time ✓ Less degree to heal naturally ✓ Greater chance of thrombosis

Tunneled center venous catheter

- ✓ Immediate use
- ✓ Marked chance of central vascular stenosis
- ✓ Shortest half-life
- Risk of blood-stream infection

Associations between Hemodialysis Access Type and Clinical Outcomes: A Systematic Review

- 67 studies, 586,337 patients
- ① All-cause mortality, ② CV events, ③ fatal infection
- 1985~2011 (26 years)

Summary

- ➢ Fistula > Catheter in ①,②, and③
- → Graft > Catheter in ①, ②, and ③
- ➢ Fistula > Graft in in ① and③, but not②

J Am Soc Nephrol 24: 465–473, 2013

Associations between Hemodialysis Access Type and Clinical Outcomes: A Systematic Review

Study ID		Cohort N	o. of	Risk Ratio		RR	95% Cl Weight				
	Krzanowski	2011 Provalent 8	Incident Dat	ionte 10 4		1 :		1 60 10 26	0.051	0.3%	
Ekbal 2008 Garcia-Cortes	Inrig 2006	Wada 1996	Prevalent 8	Incident Patients	162	←		\longrightarrow	3.72	[0.20; 69.19]	0.1%
Thomson 2007	Astor 2005	Krzanowski 2011	Prevalent 8	Incident Patients	185	<──		>	1.27	[0.19; 8.49]	0.2%
Krzanowski 20	Polkinghor	Woo 2009	Prevalent 8	Incident Patients	358	←			1.16	[0.33; 4.00]	0.3%
Ocak 2011	Dhingra 20	Basel 2011	Prevalent 8	Incident Patients	147		-		2.80	[0.90; 8.71]	0.4%
Astor 2005 Lorenzo 2004	Dhingra 20	Astor 2005	Incid	ent Patients	206				1.21	[0.82; 1.79]	2.8%
Dhingra 2001	Allon 2006	Polkinghorne 2004	Prevalent 8	Incident Patients	2631			-	1.55	[1.15; 2.09]	4.1%
Ocak 2011	Allon 2006	Wasse 2008	Incid	ent Patients	1284				0.97	[0.76; 1.24]	5.2%
Dhingra 2001	Foley 2009	Dhingra 2001	Preval	ent Diabetics	1337				1.41	[1.12; 1.78]	5.5%
Foley 2009	Pastan 200	Pastan 2002	Preva	lent Patients	6436		- <u> </u>		1.10	[0.90; 1.34]	6.3%
Polkinghorne 2	Wasse 200	Oliver 2004	Incid	ent Patients	5924				1.34	[1.10; 1.63]	6.4%
Wasse 2008	Pisoni 200	Allon 2006	Prevalent &	Incident Patients	1733				0.97	[0.80; 1.18]	6.6%
Moist 2008	Lacson 20	Dhingra 2001	Prevalen	t Non-diabetics	3010				1.08	[0.92; 1.27]	7.6%
Pisoni 2009	Lacson 20	Pisoni 2009	Prevalent &	Incident Patients	14510		-		1.15	[1.06; 1.25]	10.3%
Xue 2003 Lacson 2009 A	Xue 2003	Xue 2003	Incid	ent Patients	25226		-		1.16	[1.08; 1.24]	10.7%
Lacson 2009 E		Foley 2009	Incid	ent Patients	220157		-+-		1.39	[1.32; 1.46]	11.1%
	Pooled RF	Lacson 2009 A	Prevalent 8	Incident Patients	58815		+		1.13	[1.08; 1.19]	11.1%
Pooled RR Heterogeneity: I-4	Heterogeneity	Lacson 2009 B	Prevalent 8	Incident Patients	56112		+		1.05	[1.00; 1.10]	11.3%
		Pooled RR Heterogeneity: I-sauare	d=80.9%, Q=83.9	9, df=16, p<0.0001			*		1.18	[1.09; 1.27]	100%
						Г — — — — — — — — — — — — — — — — — — —		1 1			
	T					0.5	1	2 5			

J Am Soc Nephrol 24: 465-473, 2013.

Nation

Type of vascular access

National Kidney Foundation Kidney Disease Outcomes Quality Initiative (US)

'Options for <u>fistula placement should be considered first</u>, followed by prosthetic grafts if fistula placement is not possible. Catheters should be avoided for HD and used only when other options listed are not available'

(UK)

The Renal Association

'We recommend that any individual who commences haemodialysis should do so with an arteriovenous fistula as first choice, an arteriovenous graft as second choice, a tunnelled venous catheter as third choice and a nontunnelled catheter as an option of necessity'

Japanese Society for Dialysis Therapy

'The first (vascular access) choice is an AVF'

Taiwan Society of Nephrology

AVF recommended

Easier said than done

Vascular access use and outcomes: an international perspective from the dialysis outcomes and practice patterns study

Prevalent patient cross-sections; cuffed catheters comprise 80-95% of catheter use in countries; DOPPS I (1996-2000), DOPPS II (2002-2003), DOPPS III (2005-2007)

The Increasing Use of Hemodialysis Catheters: Evidence from the DOPPS on Its Significance and Ways to Reverse It

Suggestion:

Fistula is the best.

Reality:

Catheters are increasing.

Reasons of discrepancy

ESRD patients are getting older.Diabetes prevails.

Country	Timing of when patient first seen by nephrologist before ESRD onset	% Catheter use at ESRD start (United States)	% Catheter use at ESRD start (France, Germany, Italy)
Australia Belgium Canada France	Not seen or seen <1 month prior to ESRD	88(n = 52)	62(n = 42)
German Italy Japan Spain	1–4 months prior to ESRD 4 months–1 year prior to ESRD	82(n = 28) 64(n = 28)	50 (n = 22) 23 (n = 46)
Sweden United K United S All coun	1–2 years prior to ESRD > 2 years prior to ESRD	72(n = 46) 63(n = 91)	26 (n = 62) 19 (n = 157)

- ✓ Cared by nephrologist as early as possible
- \checkmark Fistula first consider graft rather than

catheter

- ✓ Experienced surgeons
- \checkmark Interventional nephrology by nephrologist

(healthcare system and training)

$UpToDate^{\mathbb{R}}$: Patient survival and maintenance dialysis

CAUSES OF DEATH :

<u>Cardiovascular disease</u> accounts for approximately <u>50 percent</u> of deaths. While a decline in cardiovascular deaths has occurred in the general population, a similar trend has not been observed in dialysis patients.
<u>Infections</u>, which are the second most common cause of death, are usually due to common organisms (such as *Staphylococcus aureus*) and are frequently related to the <u>hemodialysis vascular access</u>.

Questions: Is it also true in other part of the world? if not, what's the difference?

Atorvastatin in Patients with Type 2 Diabetes Mellitus Undergoing Hemodialysis

First RCT of HD patients on the effect of statin 1255 DM, HD patients, followed for 4 years

End Point	Placebo Group (N=636)	Atorvastatin Group (N=619)	RR (95% CI)	P Value
	n			
Primary	243 (38)	226 (37)	0.92 (0.77–1.10)	0.37
Death from cardiac causes	149 (23)	121 (20)	0.81 (0.64-1.03)	0.08
Fatal stroke	13 (2)	27 (4)	2.03 (1.05–3.93)	0.04
Death from all causes	320 (50)	297 (48)	0.93 (0.79–1.08)	0.33
Death from causes other than cardiovascular or cerebrovascular disease	158 (25)	149 (24)	0.95 (0.76–1.18)	0.62
Fatal infection	68 (11)	60 (10)		

Death from CV causes/All death = $40 \sim 46\%$

AURORA Rosuvastatin and Cardiovascular Events in Patients Undergoing Hemodialysis

• RCT, 2776 patients, 50~80 y/o, followed for 3.8 yrs

Primary end point											
Combined outcome (major cardiovascular event)	396	9.2	408	9.5	0.96 (0.84–1.11)	0.59					
Death from cardiovascular causes	324	7.2	324	7.3	1.00 (0.85–1.16)	0.97					
Secondary end point											
Death											
From any cause	636	13.5	660	14.0	0.96 (0.86–1.07)	0.51					
From coronary heart disease (definite)	143	3.2	156	3.5							
From coronary heart disease (suspected)	61	1.4	53	1.2							
From other cardiac cause	36	0.8	30	0.7							
From other vascular cause	44	1.0	48	1.1							
From other cardiovascular cause	0	0.0	1	0.0							
From noncardiovascular cause	248	5.5	268	6.0	0.92 (0.77–1.09)	0.34					

Death from CV causes/All death = 50.9%

N Engl J Med 2009;360:1395-407.

Overview of Regular Dialysis Treatment in Japan (as of 31 December 2011)

Ther Apher Dial, Vol. 17, No. 6, 2013

Cause of death	Male	Female	Subtotal	Total
Cardiac failure	4 678	2 991	7 669	7 669
(%)	(25.3)	(28.8)	(26.6)	(26.6)
Cerebrovascular disorder	1 367	841	2 208	2 208
(%)	(7.4)	(8.1)	(7.7)	(7.7)
Infectious disease	3 890	1 976	5 866	5 866
(%)	(21.1)	(19.1)	(20.3)	(20.3)
Hemorrhage	318	181	499	499
(%)	(1.7)	(1.7)	(1.7)	(1.7)
Malignant tumor	1 915	718	2 633	2 633
(%)	(10.4)	(6.9)	(9.1)	(9.1)
Cachexia/Uremia	596	532	1 128	1 128
(%)	(3.2)	(5.1)	(3.9)	(3.9)
Cardiac infarction	916	424	1 340	1 340
(%)	(5.0)	(4.1)	(4.6)	(4.6)

TABLE 12. Classification of causes of death of dialysis patients who died in 2011

Cardiac infarction + Cardiac failure 26.6 + 4.6 = 31%

Current Status of Dialysis Therapy in Korea

The Korean Journal of Internal Medicine Vol. 26, No. 2, June 2011

	□ Car	diac 🍵 Vascular	Infectior	n 🗖 Liver dis	s 🔲 Soc	ial	Misc
	2001	23	17	25 7		29	
	2002	27	13	29	2 5	25	
	2003	29	10	28	3 4	25	
	2004	29	18	25	12	24	
	2005	33	14	22	<u> </u>	25	
	2006	36	10	22 2	2	29	
	2007	33	15	26	12	22	
	2008	39	12	26	12	20	n = 369
- F	D 2009	34	14	23	52	25	
н	D 2009	28	1/	22 3	3	28	n = 1,358
	2000	34	1/	10	24	20	
	2007	31	18	19	24	20	
	2000	20	10	10		20	
	2003	30	10	19	3 0	24	
-	2004	32	22	18	3 4	20	
	2003	28	18	18 3		20	
	2002	28	24	17	36	23	
	09	% 20%	40%	60%	80%		100%
1					1	6	20 10 1000
						1	

Why the difference?

Comparison between countries is difficult How do we issue the death certificate? (A patient might be admitted and passed away because of pneumoniae, but the certificate might list "cardiac arrest" as the direct cause of death.) There is a common trend that dialysis patients in East Asian are less likely to die from CV diseases, but infection may be more prevalent.

Percent distribution of prevalent dialysis patients, by modality, 2011

	Hemodialysis				Home hemodialysis					Peritoneal dialysis					
	2007	2008	2009	2010	2011	2007	2008	2009	2010	2011	2007	2008	2009	2010	2011
Argentina	96.1	96.0	96.0	95.8	95.1	0.0	0.0	0.0	0.0	0.0	3.9	4.0	4.0	4.2	4.9
Australia	68.3	68.6	69.6	71.4	72.3	9.8	9.4	9.3	9.1	8.8	22.0	22.1	21.1	19.5	18.8
Austria	91.2	91.0	91.0	91.0	91.5	0.1	0.1	0.0	0.0	0.1	8.7	8.9	8.9	8.5	8.4
Bangladesh	98.4	98.3	98.3	98.3	98.3	0.0	0.0	0.0	0.0	0.0	1.6	1.7	1.7	1.7	1.7
Belgium, Dutch sp.**	89.2	89.7	89.8	90.6	90.9	0.2	0.3	0.3	0.3	0.1	10.6	10.1	9.9	9.2	9.0
Belgium, French sp.**	90.5	90.7	90.2	89.9	90.0	1.2	1.3	1.2	1.4	1.6	8.3	8.0	8.6	8.7	8.3
Bosnia/Herzegovina	95.2	95.1	94.9	95.2	96.0	0.1	0.0	0.0	0.0	0.0	4.7	4.9	5.0	4.8	4.0
Brazil	89.4	89.6	92.3	90.6	91.6	0.0	0.0	0.0	0.0	0.0	10.6	10.4	7.7	9.4	8.4
Canada	78.6	78.3	78.4	78.5	79.0	3.0	3.3	3.5	3.7	3.9	18.4	18.4	18.1	17.8	17.1
Chile	95.2	95.3	95.3	95.1	94.6	0.0	0.0	0.0	0.0	0.0	4.8	4.7	4.7	4.9	5.4
Colombia	63.4	68.0	68.2	68.7	69.1	0.0	0.0	0.0	0.0	0.0	36.6	32.0	31.8	31.3	30.9
Croatia	92.8	91.8	91.0	91.5	92.1	0.0	0.0	0.0	0.0	0.0	7.2	8.2	9.0	8.5	7.9
Czech Republic	92.3	91.8	92.0	92.1	91.7	0.0	0.0	0.0	0.0	0.0	7.7	8.2	8.0	7.9	8.3
Denmark	71.8	72.9	73.7	74.0	75.3	3.7	4.2	4.5	4.7	4.7	24.5	22.9	21.8	21.2	20.0
Finland	75.8	74.3	75.0	77.1	77.3	3.8	3.9	3.7	3.9	4.2	20.4	21.7	21.3	18.9	18.6
France	87.4	87.8	88.5	88.5	88.9	1.6	1.3	1.2	1.0	0.9	11.1	10.8	10.3	10.5	10.2
Greece	91.7	91.7	92.0	92.3	92.8	0.0	0.0	0.0	0.0	0.0	8.3	8.3	7.9	7.7	7.2
Hong Kong	19.8	20.4	21.5	23.5	24.4	0.2	0.4	0.6	0.9	1.5	80.0	79.2	77.9	75.6	74.1
Iceland	72.1	76.6	87.1	83.3	80.2	1.6	1.6	0.0	0.0	0.0	26.2	21.9	12.9	16.7	19.8
Israel	92.9	93.6	93.3	93.8	94.1	0.0	0.0	0.0	0.0	0.0	7.1	6.4	6.7	6.2	5.9
Jalisco (Mexico)	34.2	40.4	41.5	48.7	50.6	0.0	0.0	0.0	0.0	0.0	65.8	59.6	58.5	51.3	49.4
Japan	96.7	96.8	96.7	96.7	96.8	0.1	0.1	0.1	0.1	0.1	3.3	3.1	3.2	3.2	3.1
Rep. of Korea	80.2	81.0	83.1	84.4	84.7	0.0	0.0	0.0	0.0	0.0	19.8	19.0	16.9	15.	15.3
Malaysia	89.9	90.0	90.3	90.6	90.7	1.0	1.0	1.0	1.0	1.0	9.1	9.1	8.7	8.4	8.3
Netherlands	76.0	77.4	79.0	79.4	81.5	2.3	2.5	2.5	2.7	2.7	21.7	20.1	18.5	17.9	15.8
New Zealand	48.2	48.1	48.4	47.3	48.6	15.8	15.7	16.6	17.8	18.2	36.0	36.2	35.0	34.9	33.2
Norway	80.6	83.4	80.7	81.3	84.1	0.3	0.3	0.5	0.7	0.6	19.1	16.4	18.8	18.0	15.3
Philippines	87.3	93.3	95.6	95.9	96.4	0.0	0.0	0.0	0.0	0.0	12.7	6.7	4.4	4.1	3.6
Portugal		94.8	94.4	93.9	93.7		0.0	0.0	0.0	0.0		5.2	5.6	6.1	6.3
Romania	81.8	82.8	84.5	86.5	87.7	0.0	0.0	0.0	0.0	0.1	18.2	17.1	15.5	13.5	12.2
Russia		91.0	91.3	91.4	91.6		0.0	0.0	0.0	0.0		9.0	8.7	8.6	8.4
Scotland	80.7	82.6	83.8	84.6	85.2	1.9	2.2	2.5	2.4	2.6	17.5	15.1	13.7	13.0	12.2
Serbia					90.1					0.7					9.1
Singapore	82.5	85.6	86.3	87.4	87.2	0.1	0.1	0.1	0.1	0.1	17.4	14.4	13.6	12.5	12.8
Spain	89.4	90.6	90.6	89.8	89.3	0.1	0.3	0.2	0.2	0.2	10.5	9.2	9.2	10.0	10.6
Sweden	73.0	73.3	73.7	74.8	75.8	2.9	2.8	2.7	2.7	3.0	24.2	23.9	23.6	22.5	21.2
Taiwan*	91.5	90.8	89.7	89.6		0.0	0.0	0.0	0.0		8.5	9.2	10.3	10.4) .
Thailand	94.5	90.5	84.1	81.9	78.6	0.0	0.0	0.0	0.0	0.0	5.5	9.5	15.9	18.1	21.4
Turkey	88.1	87.4	89.6	90.4	91.8	0.0	0.0	0.0	0.0	0.0	11.9	12.5	10.4	9.6	8.2
UK^	78.9	81.0	81.9	82.0	82.0	2.0	2.1	2.5	2.9	3.4	19.1	16.9	15.6	15.	14.6
United States	92.2	92.2	92.1	91.8	91.3	0.7	0.9	1.0	1.2	1.3	7.1	6.9	6.9	7.0	7.4
Uruguay	90.6	91.1	90.8	90.1	90.1	0.0	0.0	0.0	0.0	9.9	9.4	8.9	9.2	9.9	0.0

Generally, PD penetration rate is decreasing.

Differences are from:

- ✓ Geographic: populated area or not
- ✓ Cultural: PD as a self-care treatment
- ✓ Practice: Ex. in Japan, JSN/JSDT
- ✓ Healthcare policy: PD-first policy
- ✓ Advances between HD and PD
- ✓ Patients: older, more diabetics

		2006	2007	2008	2009	2010	2011
	Argentina	21.7	23.0	25.1	26.4	28.4	29.1
	Australia	31.0	29.3	38.0	35.5	38.3	37.0
	Austria	47.9	43.7	39.5	47.4	44.6	44.6
	Bangladesh	0.2	0.5	0.5	0.6	0.6	0.8
	Belgium, Dutch speaking**	39.7	43.3	40.3	39.3	37.9	40.0
	Belgium, French speaking**	39.3	40.8	37.4	37.7	38.8	44.6
	Bosnia & Herzegovina	6.8	8.4	9.1	7.0	6.0	6.3
	Brazil	17.8	18.5	20.2	22.2	24.3	25.4
	Canada	38.4	39.5	38.3	37.7	37.9	37.6
	Chile	18.5	17.1	16.8	15.1	13.5	15.6
	Colombia	14.9	14.8	16.1	18.9	19.5	17.6
	Czech Republic	41.6	38.0	31.9	34.0	27.2	31.6
	Denmark	30.8	30.3	34.8	40.3	40.9	38.9
	Finland	39.7	32.3	28.0	32.8	32.4	32.7
	France	39.9	45.1	44.9	43.6	44.6	44.7
	Greece	22.2	21.9	24.0	14.9	11.1	17.8
	Hong Kong	9.6	9.5	11.0	13.4	11.3	9.3
	Iceland	26.3	22.5	25.2	31.4	34.6	53.3
	Israel	43.2	37.7	33.1	28.6	23.7	36.7
	Jalisco (Mexico)	52.2	59.3	54.3	58.1	60.1	62.2
\rightarrow	Rep. of Korea	18.8	18.5	22.7	24.5	25.1	31.7
	Malaysia	11.1	8.2	4.7	5.1	4.5	4.3
	Netherlands	41.0	51.0	47.0	49.9	52.1	51.6
	New Zealand	21.5	29.1	28.6	28.0	25.2	26.8
	Norway	45.5	55.2	58.3	60.5	53.8	61.0
	Philippines	7.5	11.1	7.1	5.2	4.0	3.8
	Portugal			49.4	55.7	54.3	50.2
	Romania	5.3	2.8	7.3	6.3	6.1	8.1
	Russia	2.9		5.5	5.9	7.3	6.8
	Scotland	26.4	37.7	41.0	40.8	35.2	37.3
	Serbia						15.6
	Singapore	24.1	23.2	20.0	18.5	16.2	17.7
	Spain	48.2	47.3	48.3	49.8	47.3	52.9
	Sweden	40.5	42.3	45.6	42.3	39.3	45.2
	Thailand	3.6	5.9	5.4	4.8	5.5	6.3
	Turkey	11.6	18.6	18.1	26.3	34.5	39.3
	U.K., England, Wales & N Ireland	34.1	38.3	40.5	42.5	44.5	43.9
	United States	60.6	58.3	57.2	57.8	57.4	56.6
	Uruguay	42.8	28.9	37.5	35.0	25.6	39.0

Prevalence and incidence of chronic kidney disease stage G5 in Japan

At least 14,000 are on the waiting list.

Clin Exp Nephrol DOI 10.1007/s10157-014-0978-x Initial Report of the Korean Organ Transplant Registry: The First Report of National Kidney Transplantation Data

◆ There were 1125 KTs in 2009, 1154 KTs in 2010

◆ Living donors 62.9%, deceased donors 37.1%

Transplantation Proceedings, 46, 425–430 (2014)

2000-2012 Kidney transplant in Taiwan

- KTs from abroad: approximately similar number in 2000-2010
- KTs from abroad: greatly reduced in recent year.
- Liver donors > Deceased donors in recent 2-3 years.
- > 6000 in waiting list for KT, but.....
- Many agree to donate, but only few really do.

OPTN/SRTR 2012 Annual Data Report

				2002		2012
Waiting list		Level	N	%	N	%
running not	Age	18-34	7,147	14.0	8,811	9.5
		35-49	17,323	34.0	24,799	26.7
		50-64	20,340	39.9	40,523	43.6
		65-74	5,661	11.1	16,779	18.1
		75+	533	1.0	1,973	2.1
	Total		51,004	100	92,885	100
					\smile	

Transplant done	2002 Ali N	%	Deceased N	1 %	Living N	%	2012 All	%	Decease N	d %	Living N	%
Total	14,916	100.0	9,118	100.0	5,798	100.0	16,526	100.0	11,195	100.0	5,331	100.0
	92,8	85	5 v	<u>.</u> .	1	6,:	526	5				
		-										

- People's views regarding life/death, ethics and religion have greatly influenced their attitude toward organ donation.
- Support from the relevant laws?
- More attention has to be focused on improving care of the prevalent dialysis patients, if the KT rate is low.
- KTs are not without risks:

Surgical risk. Incident cancer. Infections.

Thanks for your attention