APSN Continuing Medical Education (CME)
Session 9

Critical Care Nephrology

Kent Doi, MD, PhD, FASN
Emergency and Critical Care Medicine
The University of Tokyo

- What is Critical Care Nephrology?
 - Multidisciplinary approach in which nephrologists and intensivists work together.
 - Not specialty- but patient-oriented.

- Who?
 - Intensivist
 - Nephrologist (blood purification, referral)
 - Cardiologist (surgery/medicine)
- Targets?
 - Acute kidney injury (AKI)
 - End-stage renal disease (ESRD)
 - 3. Multiple organ failure (MOF)

- Acute kidney injury (AKI)
 - Is increasing especially in the elderly.
 - Its mortality remains higher than AMI.

NIS database (JASN 2013)

VA database (CJASN 2014)

- Acute kidney injury (AKI)
 - Early detection is important for successful intervention.

- Acute kidney injury (AKI)
 - New AKI biomarkers will help to detect AKI earlier than serum Cre.

	Pre-renal	Renal
Concept	Physiological reaction against hypoperfusion	Structural damage in renal tissue
Rapid recovery	Yes	No
Na reabsorption	Increased (low FENa)	Decreased (high FENa)
Location	Outpatient	Inpatient

New spectrum of AKI —Differentiation by new biomarkers

Damage without loss of function

Renal

Damage with loss of

function

Damage Tubular biomarkers

Pre-renal

Loss of function
without damage

McCullough PA/Ronco C, Contrib Nephrol 2013

Potential renal hypoxia biomarker Urinary L-FABP

- FABPs (Fatty acid-binding proteins)
- <u>L-FABP</u>: Liver, Kidney (proximal tubule)
- 2. H-FABP: Heart, Kidney (distal tubule)
- 3. A-FABP (aP2): Adipocyte, Macrophage
- 4. I-FABP: Intestine, Liver

Normal

Ischemic (1h Bx)

fatty acids

- Volume depletion model shows
 - transient BUN elevation
 - no pathological finding in PAS
 - 3. Hypoxia = pimonidazole incorporation.

Hypoxia induced by dehydration

Pimonidazole

– reflecting renal hypoxia?

 Urinary L-FABP detects renal hypoxia with no structural damage, discriminates pre-renal from renal AKI.

Urinary L-FABP (ng/ml)

Acute tubular necrosis

- Who?
 - Intensivist
 - Nephrologist (blood purification, referral)
 - Cardiologist (surgery/medicine)
- Targets?
 - Acute kidney injury (AKI)
 - End-stage renal disease (ESRD)
 - Multiple organ failure (MOF)

- 2. End-stage renal disease (ESRD)
 - Is more frequently treated in ICU/CCU
 - Remarkable technical progress (CRRT)

British Journal of Anaesthesia **110** (1): 13–20 (2013) Advance Access publication 20 November 2012 · doi:10.1093/bja/aes401 BJA

N. Arulkumaran^{1*}, N. M. P. Annear² and M. Singer¹

- Better ICU/hospital survival than dialysis-AKI
 Odds ratios AKI vs ESRD; 3.9 (3.5-4.4) and 1.5 (1.4-1.6)
 - ESRD pts will have more benefit from ICU admission

¹ Bloomsbury Institute of Intensive Care Medicine, University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK

² Division of Medicine, University College London, Rayne Building, University Street, London WC1E 6JF, UK

^{*} Corresponding author. E-mail: nish_arul@yahoo.com

- 3. Multiple organ failure (MOF)
 - Pts will die not by "uremia/renal failure" but MOF.
 - Nephrologists should know standard management in critical care.
 - ABx, Mechanical ventilation, Sedation, Nutrition, etc.
 - Organ cross-talk in AKI has been investigated.
 - Heart-kidney (cardiorenal)
 - Lung-kidney
 - Liver-kidney (hepatorenal)

 Pulmonary neutrophil infiltration (=margination) in mouse "renal" ischemia reperfusion injury model

 Pulmonary neutrophil infiltration in mouse bilateral nephrectomy was reduced by a neutrophil elastase (NE) inhibitor.

Pulmonary NE activity

Ishii T/Doi K. Am J Pathol 2010

What is the "language" in lung-kidney crosstalk?

- High-mobility group protein B1 (HMGB1)
 - 1. DNA-binding protein in nucleus.
 - Secreted from Mono/MΦ as an inflammatory mediator
 - 3. Be increased in renal dysfunction.
- Toll-like receptor 4 (TLR4)
 - Recognize pathogen-associated molecular patterns (PAMPs) such as LPS, HSPs, etc.
 - 2. Activates innate immunity.

What is the "language" in lung-kidney crosstalk?

- 1. HMGB1 is a possible TLR4 agonist.
- TLR4 induces inflammation including neutrophil activation.

BNx, bilateral nephrectomy

(TLR4-wild)

HMGB1/TLR4 in BNx-induced lung injury

 TLR4—mutant C3H/HeJ mice were more resistant to lung injury caused by bilateral nephrectomy (BNx) compared with TLR4-wild-type C3H/HeN mice

Pulmonary neutrophil infiltration a tunos | Iunos |

Doi K. Kidney Int (in press)

(TLR4-mutant)

HMGB1/TLR4 in BNx-induced lung injury

 Oxidative stress and vascular leak were reduced in TLR4—mutant C3H/HeJ mice

Oxidative stress (HHE accumulation)

C3H/HeN (TLR4-wild)

C3H/HeJ (TLR4-mutant)

Vascular permeability (Evans blue dye)

Doi K. Kidney Int (in press)

HMGB1/TLR4 in BNx-induced lung injury

- Plasma HMGB1 was increased in wild/mutant mice.
- Treatment with anti-HMGB1 Ab reduced neutrophil infiltration only in TLR4 wild-type C3H/HeN mice.

Possible role of HMGB1—TLR4 pathway in kidney-lung cross-talk

- Renal replacement therapy (RRT) in ICU
 - How much is enough ("dose")?
 - When to start (earlier is better)?
 - Just for renal support or cytokine removal?
 - 4. When to stop?

- Dose = Qd + Qf (ml/kg/hr) in CHDF/CHF
 - 1000 ml/hr, BW 60kg (=17 ml/kg/hr)
 - Japanese insurance system 15L/day (=10 ml/kg/hr)
 - US survey 1.8[1.2-2.4] L/hr, 80kg (=23 ml/kg/hr)

Clin J Am Soc Nephrol 2: 623-630, 2007

More is better?

Ronco C et al. Lancet 2000

- Dose = Qd + Qf (ml/kg/hr) in CHDF/CHF
 - 2 RCTs of "Dose" in NEJM
 - ATN study (2008) and RENAL study (2009)
 - 20-25 ml/kg/hr vs 35-40 ml/kg/hr: no benefit

- Dose = Qd + Qf (ml/kg/hr) in CHDF/CHF
 - BEST cohort (international, n=1006, 2001)
 vs JSEPTIC cohort (Japan, n=343, 2010)

BEST 20.4 ml/kg/hr

JSEPTIC 14.3 ml/kg/hr

Uchino S, Crit Care Med 2013

- Renal replacement therapy (RRT) in ICU
 - How much is enough ("dose")?
 - When to start (earlier is better)?
 - Just for renal support or cytokine removal?
 - 4. When to stop?

Earlier initiation is better for AKI?

Starting criteria

- "Absolute" indications for CKD/ESRD should be avoided in AKI.
 - 1. Consider other organ injuries especially the lungs
 - 2. Increased catabolism and adequate nutritional protein
 - Fluid space for intravenous medications (antibiotics, vasopressors, etc.)
 - more sensitive to metabolic derangements (acid-base and electrolyte status)

"An Official ATS/ERS/ESICM/SCCM/SRLF Statement: Prevention and Management of Acute Renal Failure in the ICU Patient" AJR CCM, 2010 (181) 1128-1155.

Earlier initiation is better for AKI?

Starting criteria

- 1. BUN>100, Cre>8, anuria >6hr?
- 2. KDIGO/AKIN/RIFLE stage 3?
- 3. Consider the critically ill status with multiple organ dysfunction?
 - Fluid status, metabolic disorders
- 4. Can we use new AKI biomarkers for decision?
 - NGAL (neutrophil gelatinase-associated lipocalin)
 - L-FABP (L-type fatty acid-binding protein)
 - KIM-1 (kidney injury molecule-1)

Meta-analysis of 2 RCT, 4 pro-, 9 retro-spective

Earlier initiation is better for AKI?

 NSARF (National Taiwan University Hospital Study group on Acute Renal Failure)

Post-major abdo surgery AKI (n=98)
Crit Care. 2009;13:R171.

Septic AKI (n=370) Crit Care. 2011;15:R134

1

Earlier initiation is better for AKI?

NSARF (National Taiwan University Hospital Study group on Acute Renal

Failure)

Post-surgery AKI (n=648) Plos One 2012;7:e42952

Earlier initiation is better for AKI?

- Canadian propensity-matched cohort study
 - a time-varying propensity score representing the daily probability of initiation of dialysis for AKI.

In-hospital AKI (n=6119) CJASN 2014;9:673-681

Earlier initiation is better for AKI?

Can AKI biomarkers help us to start RRT?

- NGAL Directed Pediatric Study
 - TAKING FOCUS –
 Trial in <u>AKI</u> using <u>NG</u>AL and <u>Fluid Overload to optimize <u>CRRT Use</u>
 </u>

ClinicalTrials.gov Identifier: NCT01416298

Dr. Goldstein@Cincinnati

Trial in <u>AKI</u> using <u>NGAL</u> and <u>Fluid Overload to optimize <u>CRRT USe</u> (TAKING FOCUS)</u>

ClinicalTrials.gov Identifier: NCT01416298

(-) START CRRT

Earlier initiation is better for AKI?

Potentially influencing factors for starting RRT

Bagshaw et al. Critical Care 2009 13:317

Patient-specific	Kidney function/reserve	
	Co-morbid disease and physiologic reserve	
	Primary diagnosis: severity of illness and trajectory	
	Acute kidney injury: severity and trend	
Clinician-specific	ic Goals of therapy	
	Clinician threshold for initiation	
	Local practice patterns, Prescribing service	
Organizational	Country/institution, Health costs	
	ICU type	
	Machine and nursing availability	

- Renal replacement therapy (RRT) in ICU
 - How much is enough ("dose")?
 - When to start (earlier is better)?
 - Just for renal support or cytokine removal?
 - 4. When to stop?

Purpose of RRT in ICU

- Replaces kidney function
 - Not 100% → Renal "support"
- 2. Targets multiple organ failure
 - Removal of the overwhelming cytokines
 - Specific removal or broad elimination?

Ronco C. Artif Organs 2003

Removal of the overwhelming cytokines by RRT

Hemofiltration (convection)

Removal of middle-weight molecules by convection depends on 1) dose and 2) filter pore size.

Removal of the overwhelming cytokines by RRT

Hemofiltration (convection)

IVOIRE study: 70 mL/kg/h vs 35 mL/kg/h: no benefit

Joannes-Boyau O. Intensive Care Med 2013

Removal of the overwhelming cytokines by RRT

Hemofiltration (convection)

HICOSS study ClinicalTrials.gov Identifier: NCT00875888

- High cutoff membrane (60 kDa), CVVHD 35 ml/kg/h
- This study was stopped prematurely because of no difference in the 28 day mortality (31% vs 33%)

Removal of the overwhelming cytokines by RRT

2. Absorption; removal by using molecular adherence to the surface or interior of the filter membrane.

Nishida O. Ther Aphe Dial 2011

A promising in vitro study

- HMGB1 is a 30 kDa protein and an important inflammatory mediator in septic AKI or MOF.
- HMGB1 could be removed by AN69ST and PMMA (absorption filters) more than HCO (high cutoff) and polysulfone filters.

- Targets?
 - AKI/ESRD/MOF
- Purpose?
 - Improve patient outcomes
 - Develop novel therapeutics
- Who?
 - Intensivist/Nephrologist/Cardiologist
 - Young brilliant doctors!!

For future critical care nephrologists, we need an integrated training program

Requirement of Critical Care Nephrology

Nephrology fellow One year fellowship in critical care medicine

Critical care fellow One year fellowship in nephrology

Large institutions One or more double-board certificated staffs

An integrated critical care nephrology training program

Thank you for your attention!

Kent Doi, MD, PhD, FASN. kdoi-tky@umin.ac.jp Emergency and Critical Care Medicine, The University of Tokyo