Inflammatory cytokines and fibrotic factors in diabetic nephropathy

Professor Frederick Tam
MBBChir FRCP PhD FHEA

Ken and Mary Minton Chair of Renal Medicine

Department of Immunology and Inflammation
Hammersmith Hospital
London, UK
Declaration

Research grants, Consultancy and Advisory boards

• AstraZeneca
• Baxter Biosciences
• Boehringer Ingelheim
• GSK
• MedImmune
• Novartis
• Rigel Pharmaceuticals
Outline

Diabetic nephropathy:
- The clinical challenge
- Inflammatory cytokines: MCP-1
- Fibrotic factors: TGF-β1, CTGF, CCL18
- Biomarker studies
- Clinical trial
- Different clinical phenotypes
Diabetic Microvascular Complications

• retinopathy, nephropathy and neuropathy
• strong clinical association
• debilitating
Progression of diabetic kidney disease

- **Hypertension**
- **Glucose ↑↑**
- **Inflammation**
- **Scarred kidney**
- **Kidney failure**

Background
Diabetic nephropathy
the clinical challenge
25-50% of patients on dialysis & transplantation

Renal failure

Proteinuria

Microalbuminuria

“normal”
progression of diabetic nephropathy

• large number of diabetic patients still have \textit{progressive} renal disease,

• even with optimal medical treatment
Inflammation in diabetic nephropathy

- **Traditional theory**
 - deposition of extracellular matrix resulting in fibrosis

- **Unexpected finding**
 - increased in number of macrophages
 - Experimental models
 - Renal biopsies of patients
Inflammation in diabetic nephropathy

Robert I. Menzies, Frederick W. Tam, Robert J. Unwin, Matthew A. Bailey
Recruitment of inflammatory cells to the kidney

- Rolling
- Activation
- Adhesion
 - integrins
- Transmigration

selectins
chemokines e.g. MCP-1
cell adhesion molecules

endothelium
lumen of blood vessels
kidney tissue
chemokines
Classification of chemokines

<table>
<thead>
<tr>
<th>Subfamilies</th>
<th>Responding cells</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXC (ELR)</td>
<td>Neutrophils</td>
<td>IL-8</td>
</tr>
<tr>
<td>CXC (-ELR)</td>
<td>Mϕ</td>
<td>IP-10</td>
</tr>
<tr>
<td>CC</td>
<td>Mϕ</td>
<td>MCP-1</td>
</tr>
<tr>
<td>C</td>
<td>T cells</td>
<td>lymphotactin</td>
</tr>
<tr>
<td>CX3C</td>
<td>Mϕ</td>
<td>fractalkine</td>
</tr>
</tbody>
</table>
Monocyte chemoattractant protein-1 (MCP-1) also known as CCL2

- a chemoattractant to macrophage & T cells
- activate monocyte/macrophages
 - production of IL-1
 - superoxide production
- increase in urine of patients with diabetic nephropathy (Saitoh A et al Nephron 1998)
- secreted by glucose stimulated mesangial cells (Ihm CG et al Nephron 1998)
- renal biopsies from patients (Wada T et al Kidney Int 2000)
Production of MCP-1 by human mesangial cells

Glucose & Mechanism stretch

Effects of advanced glycation endproduct (AGE) on MCP-1 expression in mesangial cells

Yamagishi, S.-i. et al. J. Biol. Chem. 2002;277:20309-20315
MCP-1

Clinical studies
Increased urinary MCP-1

- Combined Type 1 & 2
 - Increased in micro and macroalbuminuric patients
 - Correlated with serum glycated albumin
- Type 2 diabetic
 - 3 fold increase in microalbuminuric patients
 - 5 fold increase in macroalbuminuric patients
Hypothesis

• MCP-1 is important in progression of diabetic nephropathy

Aim

• Assess urinary levels of MCP-1 at different stages of diabetic nephropathy
• Correlate urinary MCP-1 with subsequent changes in albuminuria and renal function

Tam, Riser et al Cytokine 2009
Increased urinary MCP-1 in diabetic nephropathy

- 3 fold \uparrow in diabetic nephropathy (p<0.01)
- 4 fold \uparrow in diabetic retinopathy (p<0.0005)

Tam, Riser, Frankel et al *Cytokine* 2009
Urinary MCP-1 is prognostic of fall in GFR

R = 0.61 **p < 0.0001

Urinary MCP-1
prognostic of ↓ renal function (eGFR, estimated glomerular filtration rate) over 6 years follow up

Tam, Riser, Frankel et al *Cytokine* 2009
Urinary MCP-1 a more useful prognostic marker than proteinuria in patients with established diabetic nephropathy

Tam, Riser, Frankel et al *Cytokine* 2009
Validation studies

• Study of 56 patients over 2.5 years (Brazil):

• 83 patients with diabetic nephropathy (Canada):
 Measured 7 urinary biomarkers
 Urinary MCP-1 and TGF-β as independent predictor of fall in kidney function over 2.1 years.

• Study of 380 patients from a USA clinical trial.
Selection of cases and controls from overall cohort.
Validation studies: urinary MCP-1 is a prognostic biomarker of decline of kidney function in diabetic kidney disease

- Action to Control Cardiovascular Risk in Diabetes (ACCORD) Trial
- Type 2 diabetes
- Matching baseline key clinical features (include age, sex, race, eGFR, baseline urine albumin/creatinine ratio
- 190 patients with $\geq 40\%$ sustained eGFR decline over 5 years follow-up vs 190 patients with $\leq 10\%$ decline
- Multiplex platform of biomarkers (MCP-1, IL-18, KIM-1, YKL-40) in baseline and 24 months
- Only Urinary MCP-1/creatinine ratio is higher in the patients in patients with sustained decline of kidney functions

Inhibition of MCP-1 reduced experimental diabetic nephropathy (DN)

• MCP-1 antagonist ↓ progression of murine DN. Kanamori H et al BCCR 360 (2007) 772-7
Clinical trial of inhibitor of MCP-1 receptor (CCR2)

- Patients with type 2 diabetes and albuminuria
- Randomised double-blind placebo-controlled clinical trial
- 78 European renal centres, including UK
- Key inclusion criteria:
 - Type 2 diabetes
 - 18-75 years old
 - Proteinuria (first morning void urine albumin/creatinine ratio 100-3000 mg/g)
 - eGFR ≥ 25 ml/min/1.73 m²
 - ACE inhibitor or ARB for at least 8 weeks
- Treatment for 52 weeks
- Placebo
- CCX140-B (CCR2 inhibitor) 5 mg once daily
- CCX140-B 10 mg once daily

De Zeeuw et al Lancet Diabetes Endocrinol 2015; 3:687
Clinical trial of CCR2 inhibitor

Treatment with 5 mg/day of CCX140-B resulted in 18% reduction in albuminuria (v 2% in placebo group v 11% in 10 mg/day group)

De Zeeuw et al Lancet Diabetes Endocrinol 2015; 3:687
Interaction between MCP-1 and its receptors

- Blocking CCR2 is not the same as inhibiting MCP-1

(Tam & Ong, 2019, Nephrol Dial Transplant)
Summary: MCP-1

- Strong clinical association between diabetic retinopathy and nephropathy
- Unmet medical need despite standard of care with glycaemic control, treatment of hypertension and use of ACEI/ARB
- Urinary MCP-1 is prognostic biomarker of progression of diabetic nephropathy
- MCP-1 and its receptors are novel therapeutic targets:
 – receptor CCR2 (phase 2 clinical trial)
Inflammation and fibrosis in diabetic nephropathy

Angiotensin II → MCP-1 → inflammation → Renal failure

Glucose → MCP-1 → inflammation

Hypertension → MCP-1 → inflammation

TGF-β → CTGF → Extracellular matrix → scarring
Fibrotic factors

• Transforming growth factor (TGF)β1
• Connective tissue growth factor (CTGF)
 – also know as CCN2
• CCL18

CCN=CYR61/CTGF/NOV
TGF-β

• Increased expression in renal biopsy of patients
• Increased in experimental model
• Induce by
 – high glucose
 – AGE
 – Angiotensin II
 – mechanical stretch
• Hypertrophy
• Matrix deposition
• Stimulate production of CTGF
Effect on cholecalciferol treatment on diabetic nephropathy

Kim MJ et al. Kidney Int 2011;80:851-60
Reduction of albuminuria and TGF-β1 - following replacement of vitamin D

Kim MJ et al. Kidney Int 2011;80:851-60
Connective tissue growth factor (CTGF)

- Also known as CCN2
- Mediates some of the effects of TGF-β in deposition of extracellular matrix (Wahab & Mason Cur Opinion Nephrol Hypertension 2004)
- Produced by mesangial and tubular epithelial cells (Wahab NA et al Biochem J 2001)
- Increased expression in all stages of diabetic nephropathy in patients (Wahab NA et al Biochem J 2001)
- Increased amounts in urine of patients with diabetic nephropathy (Riser BL et al Kidney Int 2003)
Expression of glomerular CTGF during the development of DN

Wahab & Mason
Detection of urinary CTGF (CCN2)

• CCN2 measured by ELISA
 – Capture Ab: affinity purified goat anti-CTGF (Santa Cruz)
 – Detection Ab: polyclonal rabbit Ab agonist 20 kDa C-terminal fragment
 – Detect whole molecule and also the C-terminal fragments
Increased urinary CTGF (CCN2) in diabetic nephropathy

Diabetic patients

 severity of albuminuria

Tam, Riser et al Cytokine 2009
CTGF-Key points

CTGF/CCN2
• Mediate downstream effect of TGF-β1
• Knockdown of CTGF reduced the severity of experimental DN

Urinary CTGF
• is an early marker of diabetic nephropathy.
• elevated in patient with micro- and macroalbuminuria
• Prognostic of rise in microalbuminuria over 1 year
CCL18
CCL18/PARC/MIP-4

- Pulmonary and activation regulated chemokine (PARC) is produced by monocytes/macrophages and dendritic cells
- Chemotactic for both naive and activated T-cells, but not granulocytes or monocytes
- Stimulate collagen production by
 - a TGF-β independent pathway
 - recruitment of pro-fibrotic lymphocytes
- In patients receiving long term peritoneal dialysis, increased dialysate CCL18, correlate with amount of glucose in dialysate

2. Luzina et al: 2006 J Cell Physiol 206, 221-228
4. Ahmad et al (unpublished results)
Prospective observational study

- Diabetic patients (n=101, including 10 with type 1, 91 with type 2 diabetes)
Increased urinary CCL18 in overt diabetic nephropathy

Qureshi et al 2007 J Am Soc Nephrol 18;325A
Synergistic Effect of CCL18 and high glucose concentration on extracellular matrix production

Human tubuloepithelial cell line

N: normal glucose concentration
A: glycated albumin
M: mannitol (osmolarity control)
H: high concentration of glucose

Montero RM et al
BMC Nephrology 2016; 17:139
Application to diabetic nephropathy

- Glucose $\uparrow \uparrow$
- Advanced glycation end products
- Hypertension
- Angiotensin II

- MCP-1
- Other cytokines

- Inflammation
- Renal failure
- Scarring

- TGF-\(\beta\)
- CTGF

- Extracellular matrix

- CCL18
Defining phenotypes of diabetic nephropathy
Principal component analysis of 30 clinical features of diabetes/CKD patients

Montero et al
Scientific Reports
Jan 2018

New clinical approach

Ongoing longitudinal follow-up (>12 years) to study the prognostic values of clinical phenotypes & cytokines
Conclusion

• Metabolic problems (diabetes and obesity) are a major cause of chronic kidney disease and kidney failure
• Increased inflammatory cytokines (MCP-1) and fibrotic cytokines/factors (TGFβ, CTGF, CCL18)
• Non-invasive biomarkers
• Therapeutic targets
Acknowledgement

- Andrew Frankel
- Ashfaq Qureshi
- Athula Herath
- Ehsanollah Esfandiari
- Gurjeet Bhangal
- Hsiu Lye Yap
- Marco Bueter
- Min Jeong Kim
- Nadia Wahab
- Rosa Montero
- Sukhpreet Singh Dubb
- Prof Anne Dornhorst
- Prof Carel le Roux
- Prof Charles Pusey
- Prof Karim Meeran
- Prof Roger Mason

- Ken and Mary Minton Chair of Renal Medicine
- Diamond Fund
- Imperial College Healthcare NHS Trust Charity Fund
- National Institute for Health Research (NIHR) Biomedical Research Centre
- Kidney Research UK
- Medical Research Council

- Chicago Medical School
 - Prof. Bruce Riser